(1)f(x)定义域为(0,+∞)(1分)求导数,得f′(x)1xa1axx(2分)令f&39;(x)0x10x21a当01a时,f′(x)>0;当x>1a时,f′(x)∴f(x)的单调增区间为(01a)f(x)的单调减区间为(1a,+∞),(4分)因此,f(x)的极大值为f(1a)lna1+a,无极小值(5分)(2)∵函数f(x)在(1,+∞)是单调减函数,∴f′(x)1xa≤0在区间(1,+∞)上恒成立(7分)∵x>1,可得01x∴a≥1,即实数a的取值范围为1,+∞)(9分)(3)由(2)得当a1时,f(x)在(1,+∞)上单调递减,∴f(x)lnx(x1),可得lnx1)(10分)令x1+12n,可得ln(1+12n)12n(11分)分别取n123,,n得ln(1+12)+ln(1+122)+ln(1+123)++ln(1+12n)12+122+123++12n112n即ln(1+12)(1+122)(1+123)(1+12n)可得(1+12)(1+122+)(1+123)(1+12n)成立